
INTRODUCTION

From its creation, Java has supported key concurrency

concepts such as threads and locks. This Refcard will help

Java developers working with multi-threaded programs to

understand core concurrency concepts and how to apply them.

CONCEPTS

CONCEPT DESCRIPTION

Atomicity
An atomic operation is one which is executed in
an all or nothing fashion, therefore partial state is
impossible.

Visibility
The conditions when one thread sees changes made
by another thread

Table 1: Concurrency concepts

RACE CONDITION

A race condition occurs when more than one thread is

performing a series of actions on shared resources, and

several possible outcomes can exist based on the order of the

actions from each thread. The below code is not thread-safe

and the value could be initialized more than once, as check-

then-act (check for null, then initialize) that lazily initializes

the field is not atomic.

class Lazy <T> {
 private volatile T value;

 T get() {
 if (value == null)
 value = initialize();
 return value;
 }
}

DATA RACE

A data race occurs when 2 or more threads try to access the

same non-final variable without synchronization. Not using

synchronization may lead to making changes which are not

visible to other threads, so reading the stale data is possible,

which in turn may have consequences such as infinite loops,

corrupted data structures, or inaccurate computations. This

code might result in an infinite loop, because the reader thread

may never observe the changes made by the writer threads:

class Waiter implements Runnable {
 private boolean shouldFinish;

 void finish() { shouldFinish = true; }

 public void run() {
 long iteration = 0;
 while (!shouldFinish) {
 iteration++;
 }
 System.out.println("Finished after: " +
iteration);
 }
}

class DataRace {

 public static void main(String[] args)
 throws InterruptedException {
 Waiter waiter = new Waiter();
 Thread waiterThread = new Thread(waiter);
 waiterThread.start();

 waiter.finish();
 waiterThread.join();
 }
}

JAVA MEMORY MODEL: HAPPENS-BEFORE RELATIONSHIP

The Java memory model is defined in terms of actions like

reading and writing fields, and synchronizing on a monitor.

Actions can be ordered by a happens-before relationship,

that can be used to reason about when a thread sees the

result of another thread's actions, and what constitutes a

properly synchronized program.

Happens-before relationships have the following properties:

• The invocation of Thread #start happens before any
action in this thread.

• Releasing a monitor happens before any subsequent
acquisition of the same monitor.

• A write to a volatile variable happens before any
subsequent read of a volatile variable.

• A write to a final variable happens before the reference of

the object is published.

 Introduction

 Concepts

 Java Memory Model

 Standard synchronization features

 Safe publication

 Threads

 java.util.concurrent

C O N T E N T S

DZONE.COM | © DZONE, INC. VISIT DZONE.COM/REFCARDZ FOR MORE!

Core Java Concurrency
ORIGINAL BY ALEX MILLER UPDATE BY IGOR SOROKIN

61

https://dzone.com/refcardz

• All actions in a thread happen before returning from a

Thread#join on that thread.

In Image 1, Action X happens before Action Y, therefore in

Thread 2 all operations to the right of Action Y will see all

the operations to the left of Action X in Thread 1.

Image 1: Happens-before illustration

STANDARD SYNCHRONIZATION FEATURES
THE SYNCHRONIZED KEYWORD

The synchronized keyword is used to prevent different

threads executing the same code block simultaneously. It

guarantees that since you acquire a lock (by entering the

synchronized block), data, which is protected by this lock, can

be manipulated in exclusive mode, so the operation can be

atomic. Also, it guarantees that other threads will observe the

result of the operation after they acquire the same lock.

class AtomicOperation {
 private int counter0;
 private int counter1;

 void increment() {
 synchronized (this) {
 counter0++;
 counter1++;
 }
 }
}

The synchronized keyword can be also specified on a

method level.

TYPE OF METHOD REFERENCE WHICH IS USED AS A MONITOR

static The class object of the class with the method

non-static The this reference

Table 2: Monitors, which are used when the whole method is synchronized

The lock is reentrant, so if the thread already holds the lock, it

can successfully acquire it again.
class Reentrantcy {

 synchronized void doAll() {
 doFirst();
 doSecond();
 }

 synchronized void doFirst() {
 System.out.println("First operation is" +
 "successful.");
 }

 synchronized void doSecond() {
 System.out.println("Second operation is" +
 "successful.");
 }
}

The level of contention affects how the monitor is acquired:

STATE DESCRIPTION

init Just created, never acquired.

biased
There is no contention and the code protected by the lock is
executed only by one thread. The cheapest one to acquire.

thin
Monitor is acquired by several threads with no contention.
Relatively cheap CAS is used for taking the lock.

fat
There is contention. The JVM requests an OS mutex and
lets the OS scheduler handle thread-parking and wake ups.

Table 3: Monitor states

WAIT/NOTIFY

wait/notify/notifyAll methods are declared in the Object

class. wait is used to make a thread to advance to the WAITING

or TIMED_WAITING (if the time-out value is passed) status. In

order to wake up a thread, any of these actions can be done:

• Another thread invokes notify, which wakes up an
arbitrary thread waiting on the monitor.

• Another thread invokes notifyAll, which wakes up all the
threads waiting on the monitor.

• Thread#interrupt is invoked. In this case,

InterruptedException is thrown.

The most common pattern is a condition loop:

class ConditionLoop {
 private boolean condition;

 synchronized void waitForCondition()
 throws InterruptedException {
 while (!condition) {
 wait();
 }
 }

 synchronized void satisfyCondition() {
 condition = true;
 notifyAll();
 }
}

• Keep in mind that in order to use wait/notify/notifyAll

on an object, you need to acquire the lock on this object first.

• Always wait inside a loop that checks the condition being

waited on – this addresses the timing issue if another

thread satisfies the condition before the wait begins. Also, it

protects your code from spurious wake-ups that can (and

do) occur.

• Always ensure that you satisfy the waiting condition

before calling notify/notifyAll. Failing to do so will

cause a notification but no thread will ever be able to

escape its wait loop.

2

DZONE.COM | © DZONE, INC.

CORE JAVA CONCURRENCY

THE VOLATILE KEYWORD

volatile solves the problem of visibility, and makes

changes of the variable’s value to be atomic, because there

is a happens-before relationship: write to a volatile variable

happens before any subsequent read from the volatile variable.
Therefore, it guarantees that any subsequent reads of the field
will see the value, which was set by the most recent write.

class VolatileFlag implements Runnable {

 private volatile boolean shouldStop;

 public void run() {
 while (!shouldStop) {
 //do smth
 }
 System.out.println("Stopped.");
 }

 void stop() {
 shouldStop = true;
 }

 public static void main(String[] args) throws
InterruptedException {
 VolatileFlag flag = new VolatileFlag();
 Thread thread = new Thread(flag);
 thread.start();

 flag.stop();
 thread.join();
 }
}

ATOMICS

The java.util.concurrent.atomic package contains a set
of classes that support atomic compound actions on a single
value in a lock-free manner similar to volatile.

Using AtomicXXX classes, it is possible to implement an

atomic check-then-act operation:

class CheckThenAct {
 private final AtomicReference<String> value =
new AtomicReference<>();

 void initialize() {
 if (value.compareAndSet(null, "value")) {
 System.out.println("Initialized only once.");
 }
 }
}

Both AtomicInteger and AtomicLong have atomic

increment/decrement operation:

class Increment {
 private final AtomicInteger state =
new AtomicInteger();

 void advance() {
 int oldState = state.getAndIncrement();
 System.out.println("Advanced: '" + oldState +
 "' -> '" + (oldState + 1) + "'.");
 }
}

If you want to have a counter and do not need to get its

value atomically, consider using LongAdder instead of

AtomicLong/AtomicInteger. LongAdder maintains the value

across several cells and grows their number if it's needed,

consequently it performs better under high contention.

THREADLOCAL
One way to contain data within a thread and make locking
unnecessary is to use ThreadLocal storage. Conceptually,
ThreadLocal acts as if there is a variable with its own version
in every Thread. ThreadLocals are commonly used for stashing
per-Thread values like the "current transaction" or other
resources. Also, they are used to maintain per-thread counters,
statistics, or ID generators.

class TransactionManager {
 private final
 ThreadLocal<Transaction> currentTransaction
 = ThreadLocal.withInitial(NullTransaction::new);

 Transaction currentTransaction() {
 Transaction current = currentTransaction.get();
 if (current.isNull()) {
 current = new TransactionImpl();
 currentTransaction.set(current);
 }
 return current;
 }
}

SAFE PUBLICATION

Publishing an object is making its reference available outside

of the current scope (for example: return a reference from a

getter). Ensuring that object is published safely (only when

it is fully constructed) may require synchronization. The safe

publication could be achieved using:

• Static initializers. Only one thread can initialize static

variables because initialization of the class is done under

an exclusive lock.

class StaticInitializer {
 // Publishing an immutable object without
 //additional initialization
 public static final Year year = Year.of(2017);
 public static final Set<String> keywords;

 // Using static initializer to construct a
 //complex object
 static {
 // Creating mutable set
 Set<String> keywordsSet = new HashSet<>();
 // Initializing state
 keywordsSet.add("java");
 keywordsSet.add("concurrency");
 // Making set unmodifiable
 keywords = Collections.
unmodifiableSet(keywordsSet);
 }
}

• Volatile field. The reader thread will always read the most

3

DZONE.COM | © DZONE, INC.

CORE JAVA CONCURRENCY

recent value because a write to a volatile variable

happens before any subsequent read.

class Volatile {
 private volatile String state;

 void setState(String state) {
 this.state = state;
 }

 String getState() {
 return state;
 }
}

• Atomics. For example, AtomicInteger stores the value

in a volatile field, so the same rule for volatile variables is

applicable here.

 class Atomics {
 private final AtomicInteger state =
new AtomicInteger();

 void initializeState(int state) {
 this.state.compareAndSet(0, state);
 }

 int getState() {
 return state.get();
 }
}

• Final Fields

class Final {
 private final String state;

 Final(String state) {
 this.state = state;
 }

 String getState() {
 return state;
 }
}

Make sure that the this reference is not escaped during
construction.

class ThisEscapes {
 private final String name;

 ThisEscapes(String name) {
 Cache.putIntoCache(this);
 this.name = name;
 }

 String getName() { return name; }
}

class Cache {
 private static final Map<String, ThisEscapes>
CACHE = new ConcurrentHashMap<>();

 static void putIntoCache(
ThisEscapes thisEscapes) {
 // 'this' reference escaped before the object
//is fully constructed.

 CACHE.putIfAbsent(thisEscapes.getName(),
thisEscapes);
 }
}

• Correctly synchronized field.

class Synchronization {

 private String state;

 synchronized String getState() {
 if (state == null)
 state = "Initial";
 return state;
 }
}

IMMUTABLE OBJECTS

A great property of immutable objects is that they are thread-

safe, so no synchronization is necessary. The requirements for

an object to be immutable are:

• All fields are final.

• All fields must be either mutable or immutable objects

too, but do not escape the scope of the object so the

state of the object cannot be altered after construction.

• this reference does not escape during construction.

• The class is final, so it is not possible to override this

behavior in subclasses.

Example of an immutable object:

// Marked as final - subclassing is forbidden
public final class Artist {
 // Immutable object, field is final
 private final String name;
 // Collection of immutable objects, field is final
 private final List<Track> tracks;

 public Artist(String name, List<Track> tracks) {
 this.name = name;
 // Defensive copy
 List<Track> copy = new ArrayList<>(tracks);
 // Making mutable collection unmodifiable
 this.tracks = Collections.unmodifiableList(copy);
 // 'this' is not passed to anywhere during
 // construction
 }
 // Getters, equals, hashCode, toString
}

// Marked as final - subclassing is forbidden
public final class Track {
 // Immutable object, field is final
 private final String title;

 public Track(String title) {
 this.title = title;
 }
 // Getters, equals, hashCode, toString
}

4

DZONE.COM | © DZONE, INC.

CORE JAVA CONCURRENCY

THREADS

The java.lang.Thread class is used to represent an

application or JVM thread. The code is always being

executed in the context of some Thread class (use

Thread#currentThread() to obtain your own Thread).

STATE DESCRIPTION

NEW Not started.

RUNNABLE Up and running

BLOCKED
Waiting on a monitor — it is trying to acquire the
lock and enter the critical section.

WAITING
Waiting for another thread to perform a
particular action (notify/notifyAll,
LockSupport#unpark).

TIMED_WAITING Same as WAITING, but with a timeout.

TERMINATED Stopped.

Table 4: Thread states

THREAD METHOD DESCRIPTION

start
Starts a Thread instance and execute its
run() method.

join Blocks until the Thread finishes.

interrupt

Interrupts the thread. If the thread is blocked
in a method that responds to interrupts, an
InterruptedException will be thrown in the
other thread, otherwise the interrupt status is set.

stop, suspend,
resume, destroy

These methods are all deprecated. They
perform dangerous operations depending on
the state of the thread in question. Instead,
use Thread#interrupt() or a volatile flag to
indicate to a thread what it should do

Table 5: Thread coordination methods

HOW TO HANDLE INTERRUPTEDEXCEPTION?

• Clean up all resources and finish the thread execution if it

is possible at the current level.

• Declare that the current method throws
InterruptedException.

• If a method is not declared to throw

InterruptedException, the interrupted flag should be

restored to true by calling Thread.currentThread().

interrupt() and an exception, which is more

appropriate at this level, should be thrown. It is highly

important to set the flag back to true in order to give a

chance to handle interruptions at a higher level.

UNEXPECTED EXCEPTION HANDLING

Threads can specify an UncaughtExceptionHandler that will

receive a notification of any uncaught exception that causes a

thread to abruptly terminate.

Thread thread = new Thread(runnable);
thread.setUncaughtExceptionHandler((failedThread,
exception) -> {
 logger.error("Caught unexpected exception in thread
 ‘{}’.", failedThread.getName(), exception);
});
thread.start();

LIVENESS

DEADLOCK
A deadlock occurs when there is more than one thread, each
waiting for a resource held by another, such that a cycle of
resources and acquiring threads is formed. The most obvious
kind of resource is an object monitor but any resource that
causes blocking (such as wait/notify) can qualify.

Potential deadlock example:

class Account {
 private long amount;

 void plus(long amount) { this.amount += amount; }

 void minus(long amount) {
 if (this.amount < amount)
 throw new IllegalArgumentException();
 else
 this.amount -= amount;
 }

 static void transferWithDeadlock(long amount,
Account first, Account second){
 synchronized (first) {
 synchronized (second) {
 first.minus(amount);
 second.plus(amount);
 }
 }
 }
}

The deadlock happens if at the same time:

• One thread is trying to transfer from the first account to the

second, and has already acquired the lock on the first account.

• Another thread is trying to transfer from the second

account to the first one, and has already acquired the lock

on the second account.

Techniques for avoiding deadlock:

• Lock ordering — always acquire the locks in the same order.

5

DZONE.COM | © DZONE, INC.

CORE JAVA CONCURRENCY

class Account {
 private long id;
 private long amount;
 // Some methods are omitted
 static void transferWithLockOrdering(long
amount, Account first, Account second){
 boolean lockOnFirstAccountFirst = first.id <
second.id;
 Account firstLock = lockOnFirstAccountFirst ?
first : second;
 Account secondLock = lockOnFirstAccountFirst
? second : first;
 synchronized (firstLock) {
 synchronized (secondLock) {
 first.minus(amount);
 second.plus(amount);
 }
 }
 }
}

• Lock with timeout — do not block indefinitely upon

acquiring the lock, but rather release all locks and try again.

class Account {
 private long amount;
 // Some methods are omitted

 static void transferWithTimeout(
 long amount, Account first, Account second,
 int retries, long timeoutMillis
) throws InterruptedException {
 for (int attempt = 0; attempt < retries;
 attempt++) {
 if (first.lock.tryLock(timeoutMillis,
 TimeUnit.MILLISECONDS)){
 try {

 if (second.lock.tryLock(timeoutMillis,
 TimeUnit.MILLISECONDS)){
 try {
 first.minus(amount);
 second.plus(amount);
 }finally {
 second.lock.unlock();
 }
 }

 }finally {
 first.lock.unlock();
 }
 }
 }
 }
}

The JVM can detect monitor deadlocks and will print deadlock

information in thread dumps.

LIVELOCK AND THREAD STARVATION

Livelock occurs when threads spend all of their time

negotiating access to a resource or detecting and avoiding

deadlock such that no thread actually makes progress.

Starvation occurs when threads hold a lock for long periods

such that some threads "starve" without making progress.

JAVA.UTIL.CONCURRENT

THREAD POOLS

The core interface for thread pools is ExecutorService.

java.util.concurrent also provides a static factory class

Executors, which contains factory methods for the creation

of a thread pool with the most common configurations.

METHOD DESCRIPTION

newSingleThreadExecutor
Returns an ExecutorService
with exactly one thread.

newFixedThreadPool
Returns an ExecutorService
with a fixed number of threads.

newCachedThreadPool
Returns an ExecutorService
with a varying size thread pool.

newSingleThreadScheduled
Executor

Returns a ScheduledExecutor
Service with a single thread.

newScheduledThreadPool
Returns a ScheduledExecutor
Service with a core set of
threads.

newWorkStealingPool
Returns an work-stealing
ExecutorService.

Table 6: Static factory methods

When sizing thread pools, it is often useful to base the size

on the number of logical cores in the machine running the

application. In Java, you can get that value by calling

Runtime.getRuntime().availableProcessors().

IMPLEMENTATION DESCRIPTION

ThreadPoolExecutor

Default implementation with an
optionally resizing pool of threads, a
single working queue and configurable
policy for rejected tasks (via
RejectedExecutionHandler), and
thread creation (via ThreadFactory).

ScheduledThread
PoolExecutor

An extension of ThreadPoolExecutor
that provides the ability to schedule
periodical tasks.

ForkJoinPool
Work stealing pool: all threads in the pool
try to find and run either submitted tasks
or tasks created by other active tasks.

Table 7: Thread pool implementations

6 CORE JAVA CONCURRENCY

DZONE.COM | © DZONE, INC.

Tasks are submitted with ExecutorService#submit,
ExecutorService#invokeAll, or
ExecutorService#invokeAny, which have multiple
overloads for different types of tasks.

INTERFACE DESCRIPTION

Runnable Represent a task without a return value.

Callable
Represents a computation with a return value. It
also declares to throw raw Exception, so no
wrapping for a checked exception is necessary.

Table 8: Tasks' functional interfaces

FUTURE
Future is an abstraction for asynchronous computation. It
represents the result of the computation, which might be
available at some point: either a computed value or an
exception. Most of the methods of the ExecutorService use
Future as a return type. It exposes methods to examine the
current state of the future or block until the result is available.

ExecutorService executorService = Executors.
newSingleThreadExecutor();
Future<String> future = executorService.submit(()
-> "result");

try {
 String result = future.get(1L, TimeUnit.SECONDS);
 System.out.println("Result is '" + result + "'.");
}
catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 throw new RuntimeException(e);
}
catch (ExecutionException e) {
 throw new RuntimeException(e.getCause());
}
catch (TimeoutException e) {
 throw new RuntimeException(e);
}
assert future.isDone();

LOCKS
LOCK
The java.util.concurrent.locks package has a standard
Lock interface. The ReentrantLock implementation duplicates
the functionality of the synchronized keyword but also provides
additional functionality such as obtaining information about the
state of the lock, non-blocking tryLock(), and interruptible
locking. Example of using an explicit ReentrantLock instance:

class Counter {
 private final Lock lock = new ReentrantLock();
 private int value;

 int increment() {
 lock.lock();
 try {
 return ++value;
 } finally {
 lock.unlock();
 }
 }
}

READWRITELOCK

The java.util.concurrent.locks package also contains

a ReadWriteLock interface (and ReentrantReadWriteLock

implementation) which is defined by a pair of locks for reading

and writing, typically allowing multiple concurrent readers but

only one writer.

class Statistic {
 private final ReadWriteLock lock =
new ReentrantReadWriteLock();
 private int value;

 void increment() {
 lock.writeLock().lock();
 try {
 value++;
 } finally {
 lock.writeLock().unlock();
 }
 }

 int current() {
 lock.readLock().lock();
 try {
 return value;
 } finally {
 lock.readLock().unlock();
 }
 }
}

COUNTDOWNLATCH

The CountDownLatch is initialized with a count. Threads may

call await() to wait for the count to reach 0. Other threads

(or the same thread) may call countDown() to reduce the

count. Not reusable once the count has reached 0. Used to

trigger an unknown set of threads once some number of

actions has occurred.

COMPLETABLEFUTURE

CompletableFuture is an abstraction for async computation.

Unlike plain Future, where the only possibility to get the

result is to block, it's encouraged to register callbacks

to create a pipeline of tasks to be executed when either

the result or an exception is available. Either during

creation (via CompletableFuture#supplyAsync/runAsync)

or during adding callbacks (*async family's methods), an

executor, where the computation should happen, can be

specified (if it is not specified, it is the standard global

ForkJoinPool#commonPool).

Take into consideration that if the CompletableFuture is

already completed, the callbacks registered via non *async

methods are going to be executed in the caller's thread.

If there are several futures you can use

CompletableFuture#allOf to get a future, which is

7 CORE JAVA CONCURRENCY

DZONE.COM | © DZONE, INC.

completed when all futures are completed, or

CompletableFuture#anyOf, which is completed as soon as

any future is completed.

ExecutorService executor0 = Executors.
newWorkStealingPool();
ExecutorService executor1 = Executors.
newWorkStealingPool();

//Completed when both of the futures are completed
CompletableFuture<String> waitingForAll =
CompletableFuture
 .allOf(
 CompletableFuture.supplyAsync(() -> "first"),
 CompletableFuture.supplyAsync(() -> "second",
 executor1)
)
 .thenApply(ignored -> " is completed.");

CompletableFuture<Void> future = CompletableFuture.
supplyAsync(() -> "Concurrency Refcard", executor0)
 //Using same executor
 .thenApply(result -> "Java " + result)

 //Using different executor
 .thenApplyAsync(result -> "Dzone " + result,
 executor1)

 //Completed when this and other future are
 //completed
 .thenCombine(waitingForAll, (first, second) -> first
 + second)

 //Implicitly using ForkJoinPool#commonPool as the
 //executor
 .thenAcceptAsync(result -> {
 System.out.println("Result is '" + result +
 "'.");
 })

 //Generic handler
 .whenComplete((ignored, exception) -> {
 if (exception != null)
 exception.printStackTrace();
 });

//First blocking call - blocks until it is not finished.
future.join();

future
 //Executes in the current thread (which is main).
 .thenRun(() -> System.out.println("Current thread
 is '" + Thread.currentThread().getName() + "'."))

 //Implicitly using ForkJoinPool#commonPool as the
 //executor
 .thenRunAsync(() -> System.out.println("Current" +
 "thread is '" + Thread.currentThread().getName() +
 "'."));

CONCURRENT COLLECTIONS

The easiest way to make a collection thread-safe is to use

Collections#synchronized family methods. Because this

solution performs poorly under high contention, java.util.

concurrent provides a variety of data structures which are

optimized for concurrent usage.

LIST

IMPLEMENTATION DESCRIPTION

CopyOnWriteArrayList

It provides copy-on-write semantics
where each modification of the data
structure results in a new internal
copy of the data (writes are thus very
expensive, whereas reads are cheap).
Iterators on the data structure always
see a snapshot of the data from when
the iterator was created.

Table 9: Lists in java.util.concurrent

MAPS

IMPLEMENTATION DESCRIPTION

ConcurrentHashMap

It usually acts as a bucketed hash
table. Read operations, generally, do
not block and reflect the results of the
most recently completed write. The
write of the first node in an empty bin
is performed by just CASing (compare-
and-set) it to the bin, whereas other
writes require locks (the first node of a
bucket is used as a lock).

ConcurrentSkipListMap

It provides concurrent access along
with sorted map functionality similar
to TreeMap. Performance bounds are
similar to TreeMap although multiple
threads can generally read and write
from the map without contention as
long as they are not modifying the
same portion of the map.

Table 10: Maps in java.util.concurrent

SETS

IMPLEMENTATION DESCRIPTION

CopyOnWriteArraySet
Similar to CopyOnWriteArrayList,
it uses copy-on-write semantics to
implement the Set interface.

ConcurrentSkipListSet
Similar to ConcurrentSkipListMap,
but implements the Set interface.

Table 11: Sets in java.util.concurrent

Another approach to create a concurrent set is to wrap a

concurrent map:

Set<T> concurrentSet = Collections.newSetFromMap(
new ConcurrentHashMap<T, Boolean>());

QUEUES

Queues act as pipes between "producers" and "consumers."

Items are put in one end of the pipe and emerge from the

8 CORE JAVA CONCURRENCY

DZONE.COM | © DZONE, INC.

9 CORE JAVA CONCURRENCY

other end of the pipe in the same "first-in first-out" (FIFO)

order. The BlockingQueue interface extends Queue to

provide additional choices of how to handle the scenario

where a queue may be full (when a producer adds an item) or

empty (when a consumer reads or removes an item). In these

cases, BlockingQueue provides methods that either block

forever or block for a specified time period, waiting for the

condition to change due to the actions of another thread.

IMPLEMENTATION DESCRIPTION

ConcurrentLinkedQueue
An unbounded non-blocking
queue backed by a linked list.

LinkedBlockingQueue
An optionally bounded blocking
queue backed by a linked list.

PriorityBlockingQueue

An unbounded blocking queue
backed by a min heap. Items are
removed from the queue in an
order based on the Comparator
associated with the queue
(instead of FIFO order).

IMPLEMENTATION DESCRIPTION

DelayQueue

An unbounded blocking queue of
elements, each with a delay value.
Elements can only be removed
when their delay has passed and
are removed in the order of the
oldest expired item.

SynchronousQueue

A 0-length queue where the
producer and consumer block
until the other arrives. When
both threads arrive, the value is
transferred directly from producer
to consumer. Useful when
transferring data between threads.

Table 12: Queues in java.util.concurrent

ABOUT THE AUTHOR

IGOR SOROKIN is a Java and Scala developer. He has working experience with big data analytics companies

(comScore), highload web projects (Yandex.Music), and big financial institutions (Moscow Exchange).

He has expertise in a wide range of technologies (i.e. Apache Spark, Spring, MongoDB, Akka) and a passion

for continuous learning.

Currently, resides in Amsterdam, Netherlands working as a Senior Java Developer at comScore. You can find

him on GitHub here, LinkedIn here, and DZone here.

Copyright © 2017 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval

system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior

written permission of the publisher.

DZone communities deliver over 6 million pages each month to more than 3.3 million software developers, architects and decision makers.

DZone offers something for everyone, including news, tutorials, cheat sheets, research guides, feature articles, source code and more.

"DZone is a developer's dream," says PC Magazine.

Refcardz Feedback Welcome: refcardz@dzone.com

Sponsorship Opportunities: sales@dzone.com

DZone, Inc. 150 Preston Executive Dr. Cary, NC 27513

888.678.0399 - 919.678.0300

https://github.com/sorokinigor
https://www.linkedin.com/in/igor-sorokin/
https://dzone.com/users/3062286/igorsorokin.html
mailto:refcardz%40dzone.com?subject=
mailto:sales%40dzone.com?subject=
http://www.dzone.com

